International Journal of Engineering, Science and Mathematics

Vol. xIssue x, Month 201x,

ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijesm.co.in, Email: ijesmj@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

QUADRATIC RANDOM INTEGRO- DIFFERENTIAL EQUATION

P.R.Shinde

Abstract

In this paper, we investigat abstract measure integro random differential equation and prove existence results random fixed point theorem of Dhage.

Keywords:

Random integro-

differential

equation; measure

integral;random fixedpoint

theorem; Caratheodory

condition; banach algebra.

Copyright © 2020 International Journals of

Multidisciplinary Research Academy. All rights reserved.

Author correspondence:

Department of Mathematics,

Gramin Mahavidhyalaya,

Vasat Nagar, Mukhed, Dist. Nanded (M.S.) INDIA

1.INTRODUCTION

Let X be the real Banach algebra with convenient norm $\|.\|$. Let x ,y \in X .Then the line segment \overline{xy} in X is defined by

$$\overline{xy} = \left\{ z \in X \mid z = x + r(y - x), 0 \le r \le 1 \right\}$$

(1.1)

Let $x_o \in X$ be a fixed point and $z \in X$. Then for any $x \in \overline{x_o z}$ We define the sets S_x and

$$\overline{S}_{x} = \left\{ rx | z = -\infty < r < 1 \right\}$$

$$\overline{S}_{x} = \left\{ rx | z = -\infty < r \le 1 \right\}$$

(1.2)

Let $x_1, x_2 \in \overline{xy}$ be arbitrary .We say $x_1 < x_2$ if $S_{x_1} \subset S_{x_2}$ or ,equivalently $\overline{x_0x_1} \subset \overline{x_0x_2}$.In this case we also write $x_2 > x_1$.

Let M denotes the σ -algebra of all subsets of X such that such that (X,M) is a measurable space .Let ca(X,M) be the space of all vector measures (real signed measures) and define a norm $\|\cdot\|$ on ca(X,M) by

$$||p|| = |p|(X)$$

(1.3)

Where |p| is a total variation measure of p and is given by

$$|p|(X) = \sup \sum_{i=1}^{\infty} |p(E_i)|, E_i \subset X$$
,

(1.4)

Where supremum is taken over all possible partitions $\{E_i : i \in N\}$ of X. It is known that $\operatorname{ca}(X,M)$ is a Banach space with respect to the norm $\|.\|$, given by (1.3) .for any nonempty subset S of X, let $L^1_{\mu}(S,R)$ denote the space of μ -integrable real valued-functions on S which is equipped with the norm $\|.\|_{L^1_{\mu}}$ is given by

$$\|\phi\|_{L^1_{\mu}}=\int_{S}|\varphi(\mathbf{x})|d\mu.$$

For $\phi \in L^1_\mu(S,R)$. Let $p_1,p_2 \in ca(X,M)$ and define a multiplication composition o in ca(X,M) by

$$(p_1 o p_2)(E) = p_1(E) p_2(E)$$

For all $E \in M$. Then we have .

Lemma 1.1. ca(X,M) is a Banach algebra.

Let μ be a σ finite measure on X,and let $p \in ca(X,M)$. We say p is absolutely continuous with respect to the measure μ if $\mu(E) = 0$ for some $E \in M$. In this case we also wright

 $p \ll \mu$.

Let $x_0 \in X$ be a fixed and let M_0 denote the σ -algebra on S_{x_0} . Let $z \in X$ be such that $z > x_0$ and let M_z denotes the σ -algebra of all sets containing M_0 and the sets of the form \overline{S}_x , $x \in \overline{x_0 z}$.

Given a $p \in ca(X, M)$ with $p \ll \mu$, consider the abstract measure integro random differential equation of the form

$$\frac{d}{d\mu} \left(\frac{p(\overline{S}_x)}{f(x, p(\overline{S}_x), \omega)} \right) = g\left(x, p(\overline{S}_x), \int_{\overline{S}_x} h(t, p(\overline{S}_t)) d\mu \right) \text{ a.e. } [\mu] \text{ on } \overline{x_0 z}$$
(1.5)

And
$$p(E) = q(E) \quad , E \in M_0$$
(1.6)

Where q is a given known vector measure $, \omega \in X, \lambda(\overline{S_x}) = \frac{p(\overline{S_x})}{f(x, p(\overline{S_x}), \omega)}$ is a signed

measure such that $\lambda << \mu, \frac{d\lambda}{d\mu}$ is a Radon-Nikodym derivative of λ with respect to μ ,

$$f: S_x \times R \times X \to R - \{0\}, \qquad g: S_z \times R \times R \to R \qquad \text{and} \qquad \text{the} \qquad \text{map} \qquad x \to g \left(x, p\left(\overline{S}_x\right), \int\limits_{\overline{S}_x} h\left(t, p\left(\overline{S}_t\right)\right) d\mu\right) \text{ is μ- integrable for each } p \in ca\left(X, M_z\right) \ .$$

Definition 1.1. Given an initial real measure q on M_0 , a vector $p \in ca(S_z, M_z)$ $(z > x_0)$ is said to be solution of problem (1.5)-(1.6), if

(i)
$$p(E) = q(E)$$
, $E \in M_0$

(ii)
$$p \square \mu$$
 on $\overline{x_0 z}$, and

(Iii) p satisfies (5.2.5) a.e. $[\mu]$ on $\overline{x_0 z}$

Remark1.1. The problem (1.5)-(1.6), is equivalent to the abstract measure integral equation

$$P(E) = \left[f\left(x, p(E_1), \omega\right) \right] \int_{E} g\left(x, p(\overline{S}_x), \int_{\overline{S}_x} h(t, p(\overline{S}_t)) d\mu \right) d\mu \qquad E \in M_z, E \subset \overline{x_0 z}$$

$$(1.7)$$

and

$$p(E) = q(E) \text{ if } E \in M_0$$
(1.8)

A solution p of problem (5.2.5)-(5.2.6) in $\overline{x_0}z$ will be denoted by $p(S_{x_0},q)$.

Note that our problem (1.5)-(1.6), includes the abstract measure differential equation considered in Dhage and Bellale [6] as a special case . To see this , define $f(x, y, \omega) = 1$ for

all
$$x \in \overline{x_0 z}$$
 and $y \in R$.then problem(5.2.5)-(5.2.6) reduces to

$$\frac{dp}{d\mu} = g\left(x, p\left(\overline{S_x}\right), \int_{\overline{S_x}} h\left(t, p\left(\overline{S_t}\right)\right) d\mu\right) \quad \text{a.e. } [\mu] \text{ on } \overline{x_0 z} ,$$

(1.9)

And
$$p(E) = q(E)$$
, $E \in M_0$

(1.10)

Thus ,problem (1.5)-(1.6), is more general.

2. AUXILIARY RESULTS

Let X be a Banach algebra and let $T: X \to X$. T is called as compact if $\overline{T(X)}$ is a compact subset of X. T is called as totally bounded if for any bounded subset S of X, T(S) is totally bounded subset of X. T is called as completely continuous if T is continuous and totally bounded on X. Every compact operator is totally bounded but converse may not be true, however, two notions are equivalent on a bonded subset of X.

An operator $T: X \to X$ is called *D*-Lipschitz if there exist a continuous and non decreasing function $\psi: R^+ \to R^+$ such that

$$||Tx - Ty|| \le \psi(||x - y||)$$

(2.1)

For all $x, y \in X$, where $\psi(0) = 0$. The function ψ is called D – function of T on X. In particular, if $\psi(r) = \alpha r, \alpha > 0$. T is called a Lipschitz with Lipschitz constant α . Further if $\alpha < 1$, then T is called contraction with contraction constant α . Again if $\psi(r) < r$ for r > 0, then T is called a nonlinear contraction on X with D -function ψ .

Now we are ready to prove the main result of this section.

Theorem2.1. (Dhage [4]).Let U and \overline{U} denote respectively the open and closed bounded subset of a Banach algebra X such that $0 \in U$. Let $A, B : \overline{U} \to X$ be two operators such that,

- a) A is D Lipschitz
- b) B is completely continuous, and

c)
$$M\phi(r) < r, r > 0$$
 , where $M = |B(\overline{U})|$,

then either

- i) the equation AxBx = x has a solution in \overline{U} or
- ii) there is a point $u \in \partial U$ such that $u = \lambda A u B u$ for some $0 < \lambda < 1$, where ∂U is a boundary of

$$\mathsf{U}$$
 in X .

An interesting corollary to theorem 2.1 in the applicable form is

Corollary 2.1. Let $B_r(0)$ and $\overline{B}_r(0)$ denote respectively the open and closed balls in a Banach algebra centered at origin O of radius r for some real number r > 0. Let $A, B : \overline{B}_r(0) \to X$ be two operators such that

- a) A is Lipschitz with Lipschitz constant α
- b) B is compact and continuous and

c)
$$\alpha M < 1$$
, where $M = \|B(\overline{B}_r(0))\|$.

Then either

- (i) the operator equation AxBx = x has a solution x in X with $||x|| \le r$, or
- (ii) there is an $u \in X$ with ||u|| = r such that $\lambda AuBu = u$ for some $0 < \lambda < 1$

We define an order relation \leq in $ca(S_z, M_z)$ with the help of cone K in $ca(S_z, M_z)$ given by

$$K = \left\{ p \in ca(S_z, M_z) \mid p(E) \ge 0 \text{ for all } E \in M_z \right\}$$
 (2.2)

Thus for any $p_1, p_2 \in ca(X, M)$ we have

$$p_1 \le p_2$$
 if and only if $p_2 - p_1 \in K$

(2.3)

Or equivalently $p_1 \le p_2$ $\Leftrightarrow p_1(E) \le p_2(E)$ for all $E \in M_z$ (2.4)

Obviously the cone K is positive in $ca(S_z, M_z)$. To see this ,let $p_1, p_2 \in K$.then $p_1(E) \ge 0$ and $p_2(E) \ge 0$ for all $E \in M_z$. By multiplication composition

$$(p_1 o p_2)(E) = p_1(E) p_2(E) \ge 0$$

For all $E \in M_z$. As a result $p_1 \circ p_2 \in K$, so K is positive cone in $ca(S_z, M_z)$.

The following lemmas follow immediately from the definition of positive cone K in $ca(S_z, M_z)$

Lemma 2.1(Dhage1). If $u_1, u_2, v_1, v_2 \in K$ are such that $u_1 \le v_1$ and $u_2 \le v_2$, then $u_1u_2 \le v_1v_2$.

Lemma 2.2. The cone K is normal in $ca(S_z, M_z)$.

Proof. To finish it is enough to prove that the norm $\|.\|$ is semi-monotone on K. Let $p_1, p_2 \in K$ be such that $p_1 \leq p_2$ on M_z . Then we have

$$0 \le p_1(E) \le p_2(E)$$

For all $E \in M_z$.

Now for a countable partition $\sigma = \{E_n : n \in N\}$ of S_z , one has

$$||p|| = |p_1|(S_z)$$

$$= \sup_{\sigma} \sum_{i=1}^{\infty} |p_1(E_i)|$$

$$\leq \sup_{\sigma} \sum_{i=1}^{\infty} |p_2(E_i)|$$

$$= |P_2|(S_z)$$

$$= ||p_2||$$

As a result $\|.\|$ is semi-monotone on K and consequently the cone K is normal in $ca(S_z,M_z)$.

Proof of the lemma is complete.

An operator $T: X \to X$ is called positive if the range r(T) of T is contained in the cone K in K.

Theorem 2.2(Dhage[4]). Let [u,v] be an order interval in the real Banach algebra X and let $A, B: [u,v] \rightarrow [u,v]$ be positive and nondecreasing operators such that

- (a) A is Lipschitz with a Lipschitz constant α ,
- (b) B is compact and continuous, and
- (c) there exist elements $u, v \in X$ with $u \le v$ satisfy $u \le AuBu$ and $AvBv \le v$.

Further ,if the cone K is positive and normal ,then the operator equation AxBx = x has a least and greatest positive solution in [u,v] ,whenever $\alpha M < 1$,where

$$M = ||B[u,v]|| = \sup\{|Bx|| : x \in [u,v]\}$$

Theorem 2.3 (Dhage [4]). Let K be a positive cone in a real Banach algebra X and let $A, B: K \to K$ be nondecreasing operators such that

- (a) A is Lipschitz with a Lipschitz constant α ,
- (b) B is totally bounded and
- (c) there exist elements $u, v \in K$ with $u \le v$ satisfy $u \le AuBu$ and $AvBv \le v$.

Further ,if the cone K is positive and normal ,then the operator equation AxBx = x has a least and greatest positive solution in [u,v] ,whenever $\alpha M < 1$,where

$$M = ||B[u,v]|| = \sup\{||Bx|| : x \in [u,v]\}$$

3. Existence Results

We need the following defination in the sequel.

Defination 3.1. A function $\beta: S_z \times R \times R \to R$ is called Caratheodory if

- (i) $x \to \beta \big(x, y_1, y_2 \big)$ is μ -measurable for each $y_1, y_2 \in R$, and
- (ii) $(y_1, y_2) \rightarrow \beta(x, y_1, y_2)$ is continuous almost everywhere $[\mu]$ on $\overline{x_0 z}$.

A Carathe'odory function β on $S_z \times R \times R$ is called L^1_μ -Carathe'odory if

For each real number r > 0 there exists a function $h_r \in L^1_\mu \big(S_z, R_+ \big)$ such that

$$\left|\beta(x, y_1, y_2)\right| \le h_r(x)$$
 a.e. $[\mu]$ on $\overline{x_0 z}$.

For all $y_1, y_2 \in R$ with $|y_1| \le r$ and $|y_2| \le r$.

A function $\psi: R_+ \to R_+$ is called submultiplicative if $\psi(\lambda r) \le \lambda \psi(r)$ for all real number $\lambda > 0$

Let Ψ denotes the class of functions $\psi: R_{+} \to R_{+}$ satisfying following properties: ψ

- (i) ψ is continuous,
- (ii) ψ is nondecreasing, and
- $(iii)\psi$ is submultiplicative.

A function $\psi \in \Psi$ is called a D-function on R_+ . There do exist D functions, in facts, the function $\psi : R_+ \to R_+$ defined by $\psi(\lambda) = \lambda r$, $\lambda > 0$ is a D-function on R_+ .

We consider the following set of assumptions:

 (A_0) For any $z > x_0$, the σ -algebra M_z is compact with respect to the topology generated by the Pseudo-metric d defined on M_z by

$$D(E_1, E_2) = |\mu|(E_1 \Delta E_2), E_1, E_2 \in M_z$$

- $(A_{\rm l}) \ \ {\rm The \ function} \ \ x \to \left| f\left(x,o,\omega\right) \right| \ {\rm is \ bounded \ with} \ \ F_{\rm 0} = \sup\nolimits_{x \in S_{\rm r}} \left| f\left(x,0,\omega\right) \right| \ .$
- (A_2) The function f is continuous and there exists a bounded function functions $\alpha: S_z \to R^+$

With bound $\|\alpha\|$ such that

$$|f(x, y_1, \omega) - f(x, y_2, \omega)| \le \alpha(x, \omega)|y_1 - y_2|$$
 a.e. $[\mu], x \in \overline{x_0 z}$

For all $y_1, y_2 \in R$.

- (B_0) q is continuous on M_z with respect to the Pseudo metric d defined in (A_0) .
- (B_1) The function $x \to h(x, p(\overline{S}_x))$ is μ integrable and satisfies

$$|h(t, y)| \le \gamma(x)|y|$$
 a.e. on $\overline{x_0 z}$ for all $y \in R$

- (B_2) The function $g(x, y_1, y_2)$ is Carathe'odory.
- (B_3) There exists a function $\phi \in L^1_{\mu}(S_z, R^+)$ such that $\phi(x) > 0$ a.e. $[\mu]$ on $\overline{x_0 z}$ and a D-function $\psi : [0, \infty) \to (0, \infty)$ such that

$$|g(x, y_1, y_2)| \le \phi(x)\psi(|y_1| + |y_2|)$$
 a.e. $\lceil \mu \rceil$ on $\overline{x_0 z}$ for all $y_1, y_2 \in R$.

We frequently use the following estimate of the function g in the subsequent part of the paper. For any $p \in ca(S_z, M_z)$, one has

$$\left|g\left(x,p(\overline{S}_{x}),\int_{\overline{S}_{x}}h(t,p(\overline{S}_{t}))d\mu\right)\right|$$

$$\leq \phi(x)\psi\left(\left|p(S_{x})\right|+\int_{\overline{S}_{x}}\left|k(t,p(\overline{S}_{t}))d\mu\right|\right)$$

$$\leq \phi(x)\psi\left(\left|p\right|(S_{z})+\int_{\overline{S}_{x}}\left|\gamma(x)(p(\overline{S}_{t}))\right|d\mu\right)$$

$$\leq \phi(x)\psi\left(\left\|p\right\|+\int_{\overline{S}_{x}}\gamma(x)\left\|p\right\|d\mu\right)$$

$$\leq \phi(x)\psi\left(\left\|p\right\|+\left\|\gamma\right\|_{L_{\mu}^{1}}\left\|p\right\|\right)$$

$$\leq \phi(x)\left(1+\left\|\gamma\right\|_{L_{\mu}^{1}}\right)\psi\left(\left\|p\right\|\right)$$

Theorem 3.1. Suppose that the assumptions $(A_0) - (A_2)$ and $(B_0) - (B_3)$ holds .Suppose that there exist a real number r > 0 such that

$$r > \frac{F_0 \left[\|q\| + \|\phi\|_{L^1_{\mu}} \left(1 + \|\gamma\|_{L^1_{\mu}} \right) \psi(r) \right]}{1 - \|\alpha\| \left[\|q\| + \|\phi\|_{L^1_{\mu}} \left(1 + \|\gamma\|_{L^1_{\mu}} \right) \psi(r) \right]}$$

(3.1)

Where $\|\alpha\| \Big[\|q\| + \|\phi\|_{L^1_\mu} \Big(1 + \|\gamma\|_{L^1_\mu} \Big) \psi(r) \Big] < 1$ and $F_0 = \sup_{x \in S_z} \Big| f \left(x, 0, \omega \right) \Big|$. Then the problem ((1.5)-(1.6), has a solution on $\overline{x_0 z}$.

Proof. Consider an open ball $\overline{B}_r(0)$ in $ca(S_z, M_z)$ centered at the origin and radius r, where r satisfies the inqualities in (3.1). Define two operators

$$A,B: \overline{B}_r(0) \to \mathrm{ca} \left(S_z, M_z\right) \ \ \mathrm{by}$$

$$A_p\left(E\right) \ = \ 1 \qquad \qquad \mathrm{if} \ \ E \in M_0$$

(3.2)

$$A_p(E) = f(x, p(E), \omega)$$
 if $E \in M_z$, $E \subset \overline{x_0 z}$

and

$$B_p(E) = q(E)$$
 if $E \in M_0$

(3.3)

$$B_{p}(E) = \int_{E} g\left(x, p(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, p(\overline{S}_{t})) d\mu\right) d\mu \quad \text{if } E \in M_{z}, E \subset \overline{x_{0}z}$$

We shall show that the operators A and B satisfies all the condition of corollary 2.1 on $\overline{B}_r(0)$.

Step I: First, we show that A is Lipschitz on $\overline{B}_r(0)$.Let $p_1, p_2 \in \overline{B}_r(0)$ be arbitrary .Then by assumption (A_{2}) ,

$$\begin{aligned} \left| A_{p_1}(E) - A_{p_2}(E) \right| &= \left| f(x, p_1(E), \omega) - f(x, p_2(E), \omega) \right| \\ &\leq \alpha(x, \omega) \left| p_1(E) - p_2(E) \right| \\ &\leq \left\| \alpha \right\| \left| p_1 - p_2 \right| (E) \end{aligned}$$

For all $E \in M_z$. Hence by definition of the norm in $ca(S_z, M_z)$ one has

$$||A_{p_1} - A_{p_2}|| \le ||\alpha|| ||p_1 - p_2||$$

For all $p_1, p_2 \in ca(S_z, M_z)$.As a result A is a Lipschitz operator on $\overline{B}_r(0)$ with the Lipschitz constant $\|\alpha\|$.

Step II: We show that B is a continuous on $\overline{B}_r(0)$. Let $\{p_n\}$ be a sequence of vector measures in $\overline{B}_r(0)$ converging to a vector measure p. Then by dominated convergence theorem,

$$\lim_{n \to \infty} \overline{B}_{p_n}(E) = \lim_{n \to \infty} \int_{E} g\left(x, p_n(\overline{S}_x), \int_{\overline{S}_x} h(t, p_n(S_t)) d\mu\right) d\mu$$

$$= \int_{E} g\left(x, p(\overline{S}_x), \int_{\overline{S}_x} h(t, p(\overline{S}_t)) d\mu\right) d\mu$$

$$= \overline{B}_{p}(E)$$

For all $E \in M_z$, $E \subset \overline{x_o z}$. Similarly if $E \in M_0$, then

$$\lim_{n\to\infty} \overline{B}_{p_n}(E) = q(E) = B_p(E) .$$

And so B is a continuous operator on $\overline{B}_r(0)$.

Step III: Next ,we show that B is a totally bounded operator on $\overline{B}_r(0)$. Let $\{p_n\}$ be a sequence in $\overline{B}_r(0)$. Then we have $\|p_n\| \le r$ for all $n \in N$. We shall show that the set

 $\left\{B_{p_n}:n\in N\right\}$ is uniformly bounded and equi-continuous set in $ca\left(S_z,M_z\right)$. In this step, we first show that $\left\{B_{p_n}\right\}$ is uniformly bounded. Then there exists two subsets $F\in M_0$ and $G\in M_z$, $G\subset \overline{x_0z}$, such that bounded.

Let $E \in M_z$.

$$E = F \cup G$$
 and $F \cap G = \phi$.

Hence by definition of B,

$$\begin{aligned} \left| B_{p_{n}}(E) \right| &\leq \left| q(F) \right| + \int_{G} \left| g\left(x, p_{n}(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, p_{n}(\overline{S}_{t})) d\mu \right) \right| d\mu \\ &\leq \left\| q \right\| + \int_{G} \phi(x) \Big(1 + \left\| \gamma \right\|_{L_{\mu}^{1}} \Big) \psi(\left\| p_{n} \right\|) d\mu \\ &\leq \left\| q \right\| + \int_{E} \phi(x) \Big(1 + \left\| \gamma \right\|_{L_{\mu}^{1}} \Big) \psi(\left\| p_{n} \right\|) d\mu \\ &\leq \left\| q \right\| + \left\| \phi \right\|_{L_{\mu}^{1}} \Big(1 + \left\| \gamma \right\|_{L_{\mu}^{1}} \Big) \psi(\left\| p_{n} \right\|) \end{aligned} \qquad \text{for all}$$

 $E \in M_{\tau}$.

From (3.3) it follows that

$$\begin{split} \left\| B_{p_n} \right\| &= \left| B_{p_n} \right| (S_z) \\ &= \sup_{\sigma} \sum_{i=n}^{\infty} \left| B_{p_n} \left(E_i \right) \right| \\ &= \left\| q \right\| + \left\| \phi \right\|_{L^1_{\mu}} \left(1 + \left\| \gamma \right\|_{L^1_{\mu}} \right) \psi \left(\left\| p \right\| \right) \\ &= \left\| q \right\| + \left\| \phi \right\|_{L^1_{\mu}} \left(1 + \left\| \gamma \right\|_{L^1_{\mu}} \right) \psi \left(r \right) \end{split}$$

For all $n \in \mathbb{N}$. Hence the sequence $\{B_{p_n}\}$ is uniformly bounded in $\overline{B}_r(0)$

Step IV: Next we show that $\left\{B_{p_n}:n\in N\right\}$ is a equi-continuous set in $ca\left(S_z,M_z\right)$.Let $E_1,E_2\in M_z$.

Then there exist subsets $F_1, F_2 \in M_0$ and $G_1, G_2 \in M_z$, $G_1 \subset \overline{X_0 Z}$, $G_2 \subset \overline{X_0 Z}$ such that

$$E_1 = F_1 \cup G_1$$
 with $F_1 \cap G_1 = \phi$

and

$$E_2 = F_2 \cup G_2$$
 with $F_2 \cap G_2 = \phi$

We know the identities

$$G_1 = (G_1 - G_2) \cup (G_2 \cap G_1)$$

(3.4)

$$G_2 = (G_2 - G_1) \cup (G_1 \cap G_2)$$

Therefore we have

$$B_{p_n}(E_1) - B_{p_n}(E_2) \le q(F_1) - q(F_2) + \int_{G_1 - G_2} \left| g\left(x, p_n(\overline{S}_x), \int_{\overline{S}_x} h(t, p_n(\overline{S}_t)) d\mu \right) \right| d\mu$$

$$+ \int_{G_2 - G_1} g\left(x, p_n(\overline{S}_x), \int_{\overline{S}_x} h(t, p_n(\overline{S}_t)) d\mu \right) d\mu$$

Since g is Caratheodory and satisfies (B_3) , we have that

$$\left| B_{p_{n}}(E_{1}) - B_{p_{n}}(E_{2}) \right| \leq \left| q(F_{1}) - q(F_{2}) \right| + \int_{G_{1} \Delta G_{2}} \left| g\left(x, p_{n}(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, p_{n}(\overline{s}_{t})) d\mu \right) \right| d\mu \\
\leq \left| q(F_{1}) - q(F_{2}) \right| + \int_{G_{1} \Delta G_{2}} \phi(x) \left(1 + \|\gamma\|_{L_{\mu}^{1}}\right) \psi(\|p_{n}\|) d\mu$$

Assume that

$$d(E_1, E_2) = |\mu|(E_1 \Delta E_2) \to 0.$$

Then we have $E_1 \to E_2$. As a result $F_1 \to F_2$ and $|\mu|(G_1 \Delta G_2) \to 0$. As q is continuous on a compact M_z , it is uniformly continuous and so

$$|B_{p_n}(E_1) - B_{p_n}(E_2)| \le |q(F_1) - q(F_2)| + \int_{G_1 \triangle G_2} \phi(x) (1 + ||\gamma||_{L^1_\mu}) \psi(||p_n||) d\mu$$

$$\to 0 \text{ as } E_1 \to E_2$$

This shows that $\left\{B_{p_n}:n\in N\right\}$ is a equi-continuous set in $ca(S_z,M_z)$. Now an application of the Arzela-Ascolli theorem yields that B is a totally bounded operator on $\overline{B}_r(o)$. Now B is continuous and totally bounded operator on $\overline{B}_r(o)$, it is completely continuous operator on $\overline{B}_r(o)$.

Step V: Finally we show that the hypothesis (c) of corollary 2.1 .The Lipschitz constant of A is $\|\alpha\|$.Here the number M in the hypothesis (c) is given by

$$M = \left\| B(\overline{B}_r(0)) \right\|$$

$$= \sup \{ \|B_p\| : p \in \overline{B}_r(\mathbf{r}) \}$$

$$\sup \{ |B_p|(S_z) : p \in \overline{B}_r(0) \}$$

Now let $E \in M_z$. Then there are sets $F \in M_0$ and $G \in M_z$, $G \subset \overline{x_0 z}$ such that

$$E = F \cup G$$
 and $F \cap G = \phi$.

From the definition of of B it follows that

$$B_{p}(E) = q(F) + \int_{G} g\left(x, p(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, p(\overline{S}_{t})) d\mu\right) d\mu$$

$$\left|B_{p}(F)\right| \leq \left|q(F)\right| + \int_{G} \left|g\left(x, p(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, p(\overline{S}_{t})) d\mu\right)\right| d\mu$$

$$\leq \left\|q\right\| + \int_{G} \phi(x) \left(1 + \left\|\gamma\right\|_{L_{\mu}^{1}}\right) \psi\left(\left\|p\right\|\right) d\mu$$

$$\leq \left\|q\right\| + \int_{\overline{x_{0}z}} \phi(x) \left(1 + \left\|\gamma\right\|_{L_{\mu}^{1}}\right) \psi\left(\left\|p\right\|\right) d\mu$$

$$= \left\|q\right\| + \left\|\phi\right\|_{L_{\mu}^{1}} \left(1 + \left\|\gamma\right\|_{L_{\mu}^{1}}\right) \psi\left(\left\|p\right\|\right).$$

Hence ,from (4.4.6) it follows that

$$\|B_p\| \le \|q\| + \|\phi\|_{L^1_u} \Big(1 + \|\gamma\|_{L^1_u}\Big)\psi(\|p\|)$$

For all $p \in \overline{B}_{r}(0)$.As a results we have

$$M = \left\| B(\bar{B}_r(0)) \right\| \le \|q\| + \|\phi\|_{L^1_\mu} \left(1 + \|\gamma\|_{L^1_\mu} \right) \psi(\|p\|)$$

Now

$$\alpha M \le \|\alpha\| \Big[\|q\| + \|\phi\|_{L^{1}_{\mu}} \Big(1 + \|\gamma\|_{L^{1}_{\mu}} \Big) \psi(r) \Big] < 1$$

And so hypothesis (c) of corollary 2.1 yields that either the operator AxBx = x has a solution, or there is a $u \in ca(S_z, M_z)$ such that ||u|| = r satisfying $u = \lambda AxBx$ for some $0 < \lambda < 1$. We show that this later assertion does not hold. Assume the contrary . Then we have

$$u(E) = \lambda \left[f(x, u(G), \omega) \right] \left(\int_{E} g\left(x, u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, u(\overline{S}_{t})) d\mu \right) d\mu \right) , \text{ if } E \in M_{z} , E \subset \overline{X_{0}z}$$

,

$$=\lambda q(E)$$
, if $E \in M_0$

For some $0 < \lambda < 1$.

If $E\in M_z$, then the sets $F\in M_0$ and $G\in \overline{M}_z$, $G\subset \overline{x_0z}$ such that $E=F\cup G$ and $F\cap G=\phi$. Then we have

$$u(E) = \lambda Au(E)Bu(E)$$

$$= \lambda \Big[f(x, u(G), \omega) \Big] (q(F)) + \int_{G} g \left(x, u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, u(\overline{S}_{t})) d\mu \right) d\mu$$

$$= \lambda \Big[f(x, u(G), \omega) - f(x, 0, \omega) \Big] \left(q(F) + \int_{G} g \left(x, u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, u(\overline{S}_{t})) d\mu \right) d\mu \right)$$

$$+ \lambda \Big[f(x, 0, \omega) \Big] \left(q(F) + \int_{G} g \left(x, u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t, u(\overline{S}_{t})) d\mu \right) d\mu \right)$$

Hence

$$|u(E)| \leq \lambda |f(x,u(G),\omega) - f(x,0,\omega)| \left(|q(F)| + \int_{G} |g(x,u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t,u(\overline{S}_{t})) d\mu) \right) d\mu$$

$$+ |f(x,0,\omega)| \left(|q(F)| + \int_{G} |g(x,u(\overline{S}_{x}), \int_{\overline{S}_{x}} h(t,u(\overline{S}_{t})) d\mu) \right) d\mu$$

$$\leq \lambda (\alpha(x)|u(G)| + F_{0}) \left(||q|| + \int_{G} \phi(x) \left(1 + ||\gamma||_{L_{\mu}^{1}} \right) \psi(||u||) d\mu \right)$$

$$\leq \left[||\alpha|| ||u|| + F_{0} \right] \left(||q|| + \int_{\overline{S}_{0z}} \phi(x) \left(1 + ||\gamma||_{L_{\mu}^{1}} \right) \psi(||u||) d\mu \right)$$

$$\leq \left[||\alpha|| ||u|| + F_{0} \right] \left(||q|| + ||\phi||_{L_{\mu}^{1}} \left(1 + ||\gamma||_{L_{\mu}^{1}} \right) \psi(||u||) \right)$$

(1.1) Which further implies that

$$\begin{aligned} \|u\| & \leq \left(\|\alpha\| \|u\| \Big[\|q\| + \|\phi\|_{L_{\mu}^{1}} \Big(1 + \|\gamma\|_{L_{\mu}^{1}} \Big) \psi \left(\|u\| \right) \Big] \right) \\ & + F_{0} \Big[\|q\| + \|\phi\|_{L_{\mu}^{1}} \Big(1 + \|\gamma\|_{L_{\mu}^{1}} \Big) \psi \left(\|u\| \right) \Big] \\ & \leq \frac{F_{0} \Big[\|q\| + \|\phi\|_{L_{\mu}^{1}} \Big(1 + \|\gamma\|_{L_{\mu}^{1}} \Big) \psi \left(\|u\| \right) \Big]}{1 - \|\alpha\| \Big[\|q\| + \|\phi\|_{L_{\mu}^{1}} \Big(1 + \|\gamma\|_{L_{\mu}^{1}} \Big) \psi \left(\|u\| \right) \Big]} \end{aligned}$$

Substituting ||u|| = r in the above inequality yields

$$r \leq \frac{F_0 \left[\|q\| + \|\phi\|_{L^1_{\mu}} \left(1 + \|\gamma\|_{L^1_{\mu}} \right) \psi(\mathbf{r}) \right]}{1 - \left(\|\alpha\| \left[\|q\| + \|\phi\|_{L^1_{\mu}} \left(1 + \|\gamma\|_{L^1_{\mu}} \right) \psi(\mathbf{r}) \right] \right)}$$

(3.6)

Which is a contradiction to the first inequality (3.1) .In consequence ,the operator equation $p(E) = A_p(E)B_p(E)$ has a solution $u(\overline{S}_{x_o},q)$ in $ca(S_z,M_z)$ with $\|u\| \le r$. This further implies that the problem (1.5)-(1.6),has a random solution on $\overline{x_0z}$. This complete the proof .

REFERENCE

- [1] B.C.Dhage ,On α -condensing mappings in Banach algebras, Math. Student 63 (1994), 146-152.
- [2] B.C.Dhage ,On abstract measure integro-differntial equations, J.Math.Phy. Sci.20 (1986), 367-380.
- [3] B.C. Dhage ,On system of abstract measure integro differential inqualities and applications,

Bull. Inst. Math. Acad .Sinica 18 (1989),65-75.

[4] B.C.Dhage ,periodic boundary value problems of first order Carathe'odory and discontinuous

differential equations, Nonlinear funct. Anal. and Application 13(2) (2008),323352.

- [5] B.C.Dhage ,D.N.Chate and S.K.Ntouyas,Abstract measure differential equations ,Dynamic
 - Systems and Appl. 13 (2004) ,105-108.
- [6] B.C. Dhage ,S.S. Bellale ,Abstract measure integro differential differential equations Global Jour. Math. Anal. 1 (1-2) (2007) ,91-108 .
- [7] B.C.Dhage, U.P. Dolhare and S.K.Ntouyas, Existance theorem for nonlinear first order functional differential equation in Banach algebras, Comm.Appl.Nonlinear Anal.10 (4)(2003),59-69
- [8] B.C.Dhage, D.O'Regan, A fixed point theorem in Banach algebras with application to nonlinear integral equation, Functional differential equations 7(3-4)(2000),259-267
- [9] J.Dugundji, A. Granas, Fixed point theory , Monographic Math. PNW , Warsaw, 1982.

[10] S.Hekkila ,V.Laxmikantham ,Monotone iterative technique for discontinuous nonlinear

diffrntial equations ,Marcel Dekker Inc .,New York 1994 .

[11] S.R.Joshi ,A system of abstract mmeasure delay differential equation

,j.Math.Phy.Sci.13

(1979), 497-506.

[12] R.R.Sharma ,An abstract measure differential equation ,Proc.Amer. Math .Soc . 32 (1972) ,

503-510.

[13] R.R.Sharma, A measure differential inquality with Applications, Proc.Amer.Math.

Soc. 48

(1975),87-97.

- [14] G.R.Shendge, S.R.Joshi, Abstract measure differential inequalities and applications, Acta Math. Hung. 41(1983), 53-54.
- [15] B.C.Dhage, R.N.Ingle, The existence Theory of first order functional RDE.
- [16] B.C.Dhage, S.S.Bellale, On Quadratic Abstract measure Integro-Differntial Equations.